

American Institute of Aeronautics and Astronautics

1

A Hybrid Method of Assurance Cases and Testing for

Improved Confidence in Autonomous Space Systems

Ben Smith1, Martin S. Feather2 and Terry Huntsberger3

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 91109

Autonomous systems react intelligently to their environments, making them capable of

handling many possible conditions, but challenging to test. We are investigating a new test

development method that aims to maximize the confidence to be achieved by combining

Assurance Cases with High Throughput Testing (HTT). Assurance Cases, developed for

safety-critical systems, are a rigorous argument that the system satisfies a property (e.g., the

Mars rover will not tip over during a traverse). They integrate testing, analysis, and

environmental and operational assumptions, from which the set of conditions that testing

must cover is determined. In our method, information from the Assurance Case is used to

determine the test coverage needed, and then input to HTT to generate the minimal test

suites needed to provide that coverage.

I. Introduction

utonomous systems are increasingly important for space exploration, but are challenging to test. Autonomy

enables spacecraft to investigate environments and phenomena that would otherwise be out of reach.

Spacecraft and rovers operate at the far end of long light-time delays with limited communications bandwidth. By

making decisions onboard, instead of through operators on Earth, they can operate in dynamic and uncertain

environments. Autonomy enables rovers to drive through uncertain terrain while avoiding hazards1; investigate

transient phenomena like dust devils2; select promising science targets3; and land on distant planets (e.g., Mars4).

However, before autonomy software is given control we must be confident that it will do what we expect and will

not endanger the spacecraft or mission objectives.

Autonomous systems are challenging to test because they must make the correct decision in a wide range of

situations. The space of situations is enormous, so exhaustive testing is impractical, and even an ambitious test

program will cover only a fraction of the situations. So how do you use limited test resources effectively? In

addition, once you are done, how confident are you in the system?

The traditional testing approach is a combination of simulation, sub-assembly testing, field-testing, and

operational constraints. The expected operational envelope limits the space of situations and responses that has to

be considered. Operational procedures then limit the autonomy capabilities to that envelope. Simulation tests cover

as much of that input space as possible, and are backed by sub-assembly and field tests of increasing fidelity.

Confidence is informed by typical factors such as coverage and defect rates. Confidence is also obtained

operationally by starting with the minimum level of autonomy and raising it over time (e.g., as was done for

validation of the autonomous science target selection system mentioned above3).

In this paper, we introduce a new assurance methodology for autonomous systems, which makes more effective

use of test resources and provides higher confidence. The method is a based on a combination of Assurance Cases

and High Throughput Testing (HTT). An Assurance Case is a rigorous, well-structured argument for why a system

meets critical requirements. A compelling argument can increase confidence by providing a sound, complete, and

reviewable case. In our methodology, an Assurance Case is coupled with High Throughput Testing to automatically

generate efficient, high-coverage test suites. Parameters and values that describe the input space are derived from

the argument structure. An HTT algorithm then generates the test suite.

The remainder of this paper describes the approach in more detail, and our ongoing work to implement and

evaluate it in the context of a pilot study.

1 Senior, Planning and Sequencing Systems, JPL, 4800 Oak Grove Drive, Pasadena, CA 91109.
2 Principal, Software Assurance and Assurance Research, JPL, 4800 Oak Grove Drive, Pasadena, CA 91109.
3 Principal, Autonomous Systems Division, JPL, 4800 Oak Grove Drive, Pasadena, CA 91109.

A

American Institute of Aeronautics and Astronautics

2

II. Approach

Our work is motivated by the desire to make more use of autonomy in space systems, provided its use can be

confidently assured. Our approach combines Assurance Cases with High Throughput Testing to improve confidence

and optimize effectiveness of scarce test resources. We are evaluating our approach in the context of the

autonomous traverse subsystem of the upcoming Mars 2020 rover mission, the next rover in NASA’s Mars

Exploration Program. It should be emphasized that this is a pilot study to evaluate the effectiveness of this approach,

and not part of the M2020 validation effort per se. As described in Ref. 5, “For Mars 2020 it is anticipated that

much of the traverse distance between ROIs will be done autonomously to maximize the time the science team has to

explore within the ROI.” – “ROI” stands for Region Of Interest, where detailed science activities are to be

conducted. The two aspects of M2020’s autonomous traverse we are studying are the mission requirements to

achieve a given traverse rate (expressed in terms of kilometers driven over a number of sols [Martian days]), and,

crucially, to do so safely (i.e., not fail catastrophically).

One of the approaches to

achieving confidence in autonomy

capabilities, as followed for

NASA’s previous Mars rovers

(MSL’s Curiosity rover, the two

MER rovers Spirit and

Opportunity, and before them

Pathfinder’s rover Sojourner), is a

combination of simulation, sub-

assembly testing, field testing, and

operational constraints. Fig. 1

illustrates (a simplification of)

how a hierarchy of levels of test

fidelity is used for this. Factors

that constrain space systems to

this kind of approach include the

one of a kind nature of NASA’s

space missions. High fidelity

artifacts are often not available

until late in the development

cycle, so early testing necessarily

focuses on lower fidelity

engineering testbeds. A further

complication is of course the inability to recreate on Earth, or even know, the environment in which the missions

will execute, which drive testing to cover a wide range of possibilities “just in case”.

The approach we are following seeks to maximize the confidence to be achieved by the finite amount of testing

possible given the above constraints. To do so, we combine two existing approaches – Assurance Cases (described

in Section II.A), and High Throughput Testing (described in Section II.B). The nature of our combination is covered

in Section II.C.

A. Assurance Cases

We repeat definition of Assurance Case found in Ref. 6: An assurance case is an organized argument that a

system is acceptable for its intended use with respect to specified concerns (such as safety, security, correctness). As

further explained there, “Assurance Case” is a relatively new term that fully encompasses the older term “Safety

case” … to place other concerns such as security and dependability alongside concerns for safety.

We picked Assurance Cases as the means to develop, organize and present the arguments that an autonomous

system satisfies critical properties. For example, a critical property in our domain of interest is “the rover will not tip

over during an autonomous traverse.” To do so could be mission ending – the kinds of rovers deployed on Mars

have no ability to right themselves were this to occur. Considerable time and effort (many reviews, inspections, tests

and analyses) is expended to assure that space missions will not suffer such catastrophic failures, given their high

cost. When missions seek to benefit from increasing amounts of autonomy, they must thoroughly address the

assurance of that autonomy to have the confidence to allow its control of mission-critical activities.

Figure 1. A (simplified) hierarchy of test levels.

American Institute of Aeronautics and Astronautics

3

For complex software systems where high dependability is needed, use of Assurance Cases was one of the

recommendations of a National Research Council study7 (note – that document uses the equivalent term

“Dependability Case”). Assurance Cases have been featured in space systems studies and applications, e.g.:

 a retrospectively constructed Dependability Case8 of the User Spacecraft Clock Calibration System as

developed by NASA Goddard

 a launch abort detection system9

 the software involved in spacecraft “safe mode”10

 assurance arguments for unmanned aircraft systems11

Since autonomy employs software algorithms and implementations atypical as compared to traditional control

software, there is natural concern that existing software V&V practices are not necessarily well suited to provide

sufficient assurance. Hence, our particular interest in Assurance Cases, because their foundation on a rigorous

argument encourages a thorough consideration from first principles of organizing evidence (e.g., test results) to give

confidence in the critical property in question. We are encouraged by a recent workshop12 on assurance for

autonomous systems for the closely related field of aviation, in which several of the participants called out assurance

cases as a promising approach. For our studies, we adopted the widely used Goal Structuring Notation (GSN)13 as

the graphical format for assurance cases.

In our use of Assurance Cases, we are particularly interested in employing Assurance Case patterns14 – common

structures in Assurance Case arguments. Patterns capture typical and well thought out portions of argument

structures. We seek to use them to reap the advantages of not having to reinvent those argument structures ourselves

(or worse, making avoidable mistakes when constructing our own argument portions) and achieving regularity so

that readers (especially reviewers) of assurance arguments will know what to look for and be able to rapidly focus

their attention on the system-specific aspects of the arguments.

B. High Throughput Testing (HTT)

High Throughput Testing (sometimes also referred to as combinatorial testing) is a method for reducing the total

number of test cases while maintaining a predetermined coverage level of the factors or variables (e.g., wheel

slippage, density of hazards, etc.) that characterize the conditions to which the system under test (SUT)15 is

subjected. Previous studies have indicated that interactions between factors produce failures that would not be

caught using a single factor test analysis16. HTT methods attempt to efficiently provide covering arrays17 for multi-

way interactions between factors. For example, a system with 10 binary factors would require 1,024 test cases for

coverage of all combinations of the factors, but only 13 tests would suffice to cover all 3-way combinations of the

factors. A related alternate approach for the reduction in the total number of test cases is DOE (Design Of

Experiments), which provides orthogonal estimates of each factor for the purposes of quantitative analysis such as

least squares regression18. A limitation of the DOE method is that almost all designs assume two to three levels

(discretizing of a continuous factor, e.g., angle of slope) for each factor (rarely the case), which leads to a need for

all combinations to be tested if this assumption is violated.

The covering array produced using HTT for software analysis differs from that used in our system. For assurance

testing of autonomous systems, there is typically a need to provide situational coverage19 of the operations and

environment (see Fig. 2) that the SUT will encounter. Many of the environmental context derived factors will be

continuous, and the number bins for discretizing the range of values becomes important for the effectiveness of the

HTT situational coverage. There may be values within the range where an abrupt change in SUT performance will

occur and may be missed in the situational covering array produced by a HTT analysis. For example, there will be

an angle of slope combined with certain terrain characteristics that will suddenly cause a SUT to start to slip. These

types of performance boundaries can be found through Gaussian process regression (GPR) techniques such as those

used in the Range Adversarial Planning Tool (RAPT) system20.

C. Hybrid Method: Assurance Cases combined with HTT

In addition to their individual contributions, we believe Assurance Cases and High Throughput Testing can be

used synergistically to provide further value to assurance.

Our vision for the overall flow of our approach is depicted in Fig. 2. To date we have performed its steps

manually in order to assess feasibility.

American Institute of Aeronautics and Astronautics

4

Assurance Case Authoring: The

information from which we construct

the Assurance Case comes from a

variety of sources: knowledge of the

way the mission, its autonomy in

particular, is to be operated;

knowledge of the mission’s

environment; traditional

requirements levied on the design;

test planned for those requirements

(typically expressed in a test matrix);

other information, e.g., hazard

analyses, review materials. We build

the Assurance Case using an

authoring tool (currently we are using

the AdvoCATE toolkit21 for this

purpose) making use of automated assistants (e.g., to translate requirement hierarchies into the backbone of an

assurance case) and patterns from a library of such that we have found useful for autonomy assurance.

Test Determination: The key step of our combined method is to extract from the Assurance Case the test

conditions needed to have confidence in the autonomous system, and feed those conditions into the HTT test suite

generator to yield an effective and efficient set of tests.

The hierarchical structure of the Assurance Case leads down to its “leaf” evidence nodes (typically tests or

analyses) supporting the claims of the lowest-level goals. Groups of evidence nodes indicate the conditions that tests

must address. The argument structure also tells us about the parameter space that those tests need to cover. Goals in

the argument provide context about the environment and artifact that suggest parameters. We can extract these

parameters from the Assurance Case and generate covering test suites with HTT. This provides an explicit,

documented link between the Assurance Case and the test suites, which improves confidence and test efficiency. If

the Assurance Case changes during development, it is easier to update the parameters and re-generate the test suite,

thereby reducing retest costs.

D. Pilot study

We are engaged in a pilot study to, it is hoped, show the benefits of Assurance Cases, HTT, and the hybrid of

these. As mentioned above, our pilot study is focused on the autonomous traverse subsystem of the upcoming Mars

2020 rover mission. Using this, we have the objectives to show that:

 Sufficiency and practicality of Assurance Cases for autonomy

o Assurance Cases are capable of expressing cogent arguments for assurance of autonomy

o Existing guidance and tooling for Assurance Case construction are sufficient

o Assurance Case “patterns” (existing ones, and new ones as might be discovered in the course

of our study) are applicable to ease the construction and comprehension of Assurance Cases

 Assurance Cases can guide the generation of efficient testing

o Test conditions can be extracted from Assurance Cases to serve as input to HTT

o HTT test suites generated as a result are efficient – efficiency is particularly important when

test resources are scarce, as is so for the higher fidelity tests of Fig. 1.

III. Results

A. Assurance Cases – Overall results

We developed (portions of) two Assurance Cases for the autonomous traverse subsystem of the upcoming Mars

2020 rover mission. One addresses the mission requirements to achieve a given traverse rate (expressed in terms of

kilometers driven over a number of sols [Martian days]); the other, the requirement to do so safely (i.e., not fail

catastrophically). Our sources of information from which to construct these cases was a combination of: the

project’s existing pre-decisional material on the autonomy design, technology, and plans for testing; insights from

discussions with the autonomy lead; and past experiences of our third author with earlier Mars rovers traverse

capabilities.

Figure 2. Our vision for combining an Assurance Case and High

Throughput Testing.

American Institute of Aeronautics and Astronautics

5

We found Assurance Cases capable of expressing the crux of the arguments for, respectively, traverse efficacy

and traverse safety.

 For traverse efficacy, our Assurance Case traced the top-to-bottom requirements hierarchy that specifies

how the rover will achieve its autonomous traverse objectives. We made repeated use of the

requirements breakdown pattern22, in which a parent requirement is subdivided into several child

requirements (typically allocated to sub-components of the component to which the parent requirement

was allocated). This applies to match the hierarchical design of the rover (system, subsystem,

component, and a similar hierarchical structure within the software architecture). We were also able to

develop some simple forms of automated assistance (see Fig. 2) to translate the project’s existing

requirement hierarchies into the backbone of our Assurance Case.

 We describe our experience developing an Assurance Case for traverse safety in detail in the subsection

that follows.

For evaluating whether our cases expressed cogent arguments, we have so far relied on determining whether

people other than ourselves can comprehend our Assurance Cases – we found this to be so when portions of our

cases were viewed both by an expert in the M2020 mobility system, and by the reviewers of our research task, who

are all familiar with JPL’s approach to system V&V, and have varying levels of familiarity with rover mobility. A

more systematic evaluation of the perspicuity of our Assurance Case is something we aim to perform in the near

future. Ideally, we would like to be able to show that use of Assurance Case itself improves the developers’ and

reviewers’ confidence in the autonomous systems it describes. In general, evaluating the benefits of

Assurance/Safety Cases has long been a challenge (e.g., Ref. 23) and remains so to this day24. Part of this is due to

the difficulty in measuring confidence conveyed by an Assurance Case25, so far we can progress in this direction

remains to be seen.

We adopted the widely used Goal Structuring Notation (GSN)13 as the graphical format to represent both our

Assurance Cases. For creating and editing we initially made use of the Astah software (http://astah.net.editions.gsn),

and subsequently the AdvoCATE toolkit21. The assurance case diagrams shown in this paper were created using the

latter; see the Appendix for a very brief guide to the notations used herein.

For guidance, we found useful Kelly’s “six-step method for the development of goal structures”26 and Spriggs’

book27. We were also keen to make use of safety case “patterns” as advocated in Ref. 14. Further motivation for

using patterns came from the experience reported in Ref 28, recounting a successful experiment in which patterns

proved effective when used by a domain expert after relatively modest amounts of training in assurance cases. If we

are to be successful in introducing assurance cases into mainstream project use, availability of guidance, and ease of

adoption, are critical considerations.

B. Details of our Assurance Case for traverse safety

We now give some details of our second Assurance Case, the one that presents the argument for the safety of the

rover’s traverse.

Our traverse safety case focused on the mission-critical aspects of autonomous driving (e.g., that it will not go

the wrong way and tip over or drive off a cliff). It follows the style of safety and assurance cases reported in the

literature. Obviously there is no threat to human safety when operating a rover on Mars, but the cost of these

missions warrants high assurance that they will not fail prematurely (i.e., before they have completed their science

objectives). We picked a thread through this that leads to the critical role played by the Visual Odometry (VO)

component. VO is the rover’s means of determining where it is – essential if it is to stay on route and avoid hazards

that have been pinpointed on a map of the terrain (e.g., as identified using high resolution imagery from orbital

spacecraft). Conveniently, we had the original VO test plans from MER and MSL (already deployed Mars rovers) to

serve as a point of comparison as regard test suite efficiency.

In the course of developing this Assurance Case we made repeated use of standard Assurance Case patterns,

including development of what we think is a new one. Indeed, most of the development of our Case is achieved by

the application of standard patterns instantiated on our system specifics, refining the Case to the level at which

evidence (testing, simulation, analyses, etc.) applies to provide evidence in support of the leaf goals. This is seen

from the very start, as illustrated by the top of our case shown in Fig. 3, where we take care to spell out the scope of

risks we are concerned with. The bifurcation into “terrain-interaction” risks (e.g., collision with a large rock, driving

over a cliff) and “non-terrain interaction” risks (e.g., execution of the autonomous driving software corrupting some

other mission critical software) allows the arguments that follow to be more readily assessed as complete, and also

to match the forms of evidence applicable. For example, “terrain interaction” risks, as its name suggests lead to

consideration of all the physical hazards to driving potentially present in the driving environment, while “non-

terrain-interaction” risks are those more standard risks that arise while executing any kind of software (e.g., that it

American Institute of Aeronautics and Astronautics

6

interferes with or corrupts some other software). The former category’s risks are the focus of our attention and lead

to consideration of how to test in various settings, etc., while the latter category’s risks are amenable to more

traditional forms of software assurance (e.g., static analysis of code to show well-behaved memory accesses).

Fig. 4 illustrates structuring the argument’s expansion of “All terrain-interaction mission risks are acceptable”,

the result of a standard “argument over risks” pattern modeled after the “Hazard Avoidance Pattern”14 (in our setting

we prefer to use the phrasing “Risk … is acceptable”). The risks listed are for purposes of illustration.

Note our inclusion of the evidence node “Experience of rover team” – we believe this to be a useful addition to

the standard pattern, since in our setting people might question whether we can be confident in the completeness of

risk identification for operations on a distant planet.

We also encountered some instances of “concerns” that the project had yet to determine were plausible risks

requiring mitigation. At this stage in the development they have a plan to further assess this risk, and, if it turns out

to be considered plausible, then to include it in the same avoidance-based approach used to address the other risks.

Figure 3. Top of assurance case.

Figure 4. Illustration of structuring an argument over risks.

American Institute of Aeronautics and Astronautics

7

We extended our assurance case to cover the plan. In this respect we are following the approach set forth in Section

5.3 of Ref. 29 where it states:
… the concept of adequate safety requires that safety is addressed throughout all phases of the system life cycle. This

translates into the development of safety objectives that span the full life of the system, from concept studies to closeout.

Correspondingly, the RISC must also address the full system life cycle, regardless of the particular point in the life cycle

at which the RISC is developed. This manifests in the RISC as two distinct types of safety claims:

 Claims related to the safety objectives of the current or previous phases argue that the objectives have been met.

 Claims related to the safety objectives of future phases argue that a ‘roadmap’ has been established for the

satisfaction of objectives yet to be met, i.e., that necessary planning and preparation have been conducted and that

commitments are in place to meet the objectives at the appropriate time.

The next step of our

argument that we show here, Fig.

5, is the breakdown of the goal

“Rover moving into location

with one or more terrain-

interaction hazards has an

acceptably low risk”. Here we

apply a “safety monitoring”

pattern, which combines an

activity intended to be free of

risk with a separate monitor

checking for a risk about to

materialize, and halting the

activity in time to avoid that risk.

Safety monitoring systems are

commonly employed, and are

covered in published literature on

safety and assurance cases, e.g.,

Refs. 30 and 31.

Further down in our

assurance case we reach the part

addressing a classical autonomy

sense-decide-act portion of the

rover design, in this case the

sensing of terrain hazards, the

decision of a route to follow that

avoids the identified hazards, and

the action of driving in a manner

that remains within the planned route. The part of this concerning sensing led us to the rover’s means of determining

where it is – essential if it is to stay on route and avoid hazards that have been pinpointed on a map of the terrain

(e.g., as identified using high resolution imagery from orbital spacecraft). There is no equivalent of GPS on Mars; a

rover’s position can be determined by ground control’s scrutiny of high resolution imagery of its surrounding

terrain. For autonomous operation without frequent such involvement of ground control, the rover maintains

knowledge of its location using Visual Odometry (VO). From Ref. 32’s description of VO used on the MER rovers:
Our Visual Odometry system computes an update to the 6-DOF rover pose (x, y, z, roll, pitch, yaw) by tracking the

motion of “interesting” terrain features between two pairs of stereo images in both 2D pixel coordinates and 3D world

coordinates. A maximum likelihood estimator applied to the computed 3D offsets produces the final motion estimate.

However, if any internal consistency check fails, too few feature points are tracked, or the estimation fails to converge,

then no motion estimate update will be produced and the initial estimate (nominally based on wheel odometry and the

IMU) will be maintained.

This proved interesting from an assurance case perspective, in several respects:

 It led us to introduce a (new?) pattern: “Confident Self Assessment” to represent the consistency check

mentioned in the above.

 It is at the level where the testing needed to provide the evidence of the adequacy of the consistency

check is determined – and hence is the point at which we connect our assurance case to High

Throughput Testing

Figure 5. Result of applying a “safety monitoring” pattern.

American Institute of Aeronautics and Astronautics

8

 Testing of VO would be done in several venues – some in a purely computer simulation with simulated

imagery, with actual images taken by flight-like cameras (but still in a simulation), in operation on a

physical rover platform in Mars-like terrain (e.g., the JPL “Mars yard” or desert areas in and around

Southern California that mimic Martian terrain)

In the current rover design, lack of a result from VO causes a halt to the drive rather than continue, thus

preserving safety (but at the expense of progress). Another, similar, example of self assessment was exhibited by the

MER rovers during their spacecrafts’ Entry Descent and Landing33. They used the Descent Image Motion

Estimation System (DIMES) for

horizontal velocity estimation

during descent, by feature

tracking between subsequent

images of the ground. DIMES

was to report a velocity estimate

only when it had a high

probability of being correct, and

used various consistency checks

to confirm this. We thought it

worthwhile to make a simple

pattern “Confident Self

Assessment” and applied it at this

point in our assurance case.

Consideration of testing arises

naturally at this stage, as the

means to show that as a result of

self assessment, VO will either

return a correct result, or not

return anything. To know whether

testing is sufficient hinges on a

hazard analysis of how VO could

potentially incorrectly calculate a

location update. There are four

broad cases to consider, as seen in this portion of our assurance case shown in Fig. 6:

 VO’s result derives from incorrectly matching features between images, possible in the conditions, or

combinations of conditions, of:

o repetitive terrain (visually identical features at different locations)

o featureless terrain (texture with too few features to use for matching)

o challenging lighting conditions (e.g., low light, glare, or directly overhead casting few

shadows)

o degraded optics

o little or no overlap between images (e.g., because the rover slipped, skidded, rotated a lot, or

traversed a long distance in its move)

 VO’s result derives from incorrectly matching non-terrain features, possible in conditions of:

o the rover’s own shadow, or portions of the rover itself, in the images (the latter excluded by

design and operation)

o dust on the lens

o failed pixels in the camera

 VO’s result is from matched features that yield insufficiently accurate location update, possible in the

conditions of:

o matched features are too distant, offering little parallax from which to compute location update

accurately

o insufficient camera resolution

 VO’s implementation is incorrectly coded

The first three categories relate to the need to provide situational coverage19 of the operations and environment

that the SUT will encounter, for which testing in high fidelity settings is preferable. The final category, of incorrect

implementation (in software and/or firmware) is more suited to assurance via analysis (e.g., static code analysis) and

Figure 6. Four categories of risks that could lead to VO returning an

incorrect result.

American Institute of Aeronautics and Astronautics

9

testing in simulated settings where large numbers of tests can be run, exercising the code paths through many

scenarios. We focus our attention on the first three categories and how we extract from them the information to feed

into HTT for generation of efficient test suites that will be used in high fidelity testing.

Should testing reveal that VO is prone to returning an incorrect result under some circumstances, the project

could respond by:

 Operationally avoiding those circumstances (e.g., by ground control recognizing repetitively rippled

terrain from orbit imagery and defining it as a keep-out zone). The policy to do this would be recorded

in the Assurance Case as an assumption. Traversing the entire case to gather together all such

assumptions would be a means to extract the full set of operational procedures the Case depends on.

 Extending VO’s self assessment to recognize those circumstances and inhibit returning a result (e.g.,

when the angle of the sun would project the rover’s shadow into the scene), and re-testing.

 Deciding the likelihood of those circumstances is so low as to be of little concern.

 Deciding the possibility of a terrain-interaction risk is low even if VO returns an incorrect result (e.g.,

featureless terrain is devoid of large rocks, so VO returning an incorrect result would not threaten the

rover). The Assurance Case helps make this determination by providing the context – the chain of

argument leading to this risk – to the decision makers.

C. HTT extraction and HTT results

The Assurance Case has reached the level at which the factors and their values that potentially pose a hazard to

VO have been identified. Extracting them from the bulleted list in the previous section yields Table 1. To provide

the input to HTT we also add in the nominal values for factors. The resulting combination of factors and values,

where all the values for a given factor are unioned to form a set of values, is shown in Table 2. Currently we do this

extraction manually; future work is to introduce automation into this step to form the “HTT extractor” box in Fig. 2.

Given this information, HTT is then applied to generate efficient test suites providing desired levels of coverage

of the combinations of nominal and hazardous values. In this example there are 2 x 5 x 5 x 4 x 2 x 4 = 1,600

combinations of all the six factors’ values. Numerical summaries of the HTT analysis results are shown in Fig. 7

(HTT also indicates what the actual tests would be, of course).

The high fidelity testing of VO is performed on the VO algorithm after the algorithm has been tuned (i.e., its

internal parameter setting optimized through field tests and operational experience). Once these parameters have

been determined, VO algorithm performance is dependent on the factors identified in Table 2. HTT results show that

all three-way combinations of factor values can be completely covered with 100 tests. By comparison, we have been

told by the developers that for VO on earlier rovers, a hand-crafted test suite of approximately 160 tests was used,

and covered only two-way combinations. This confirms that HTT can yield more efficient test suites in this example.

The coverage percentage can be used to prioritize the tests such that a parameter (e.g. Optics – nominal or

degraded) can be first tested for nominal performance, then for degraded if time/funding allows.

Factor Value(s)

repetitive terrain Terrain_Texture Rippled

featureless terrain Terrain_Texture Smooth

challenging lighting conditions Lighting Low, High, Vertical

degraded optics Optics Degraded

Ground_Interaction Low_Slip, High_Slip, Low_Skid, High_Skid

Motion Long_Distance, Large_Rotation

rover's own shadow Lighting Self_Shadowed

dust on lens Optics Degraded

failed pixels in camera Optics Degraded

matched features distant Distant_Features Present

insufficient camera resolution Optics Degraded

VO hazard

little or no image overlap

Incorrectly

matching

features

Matching

non-terrain

features

Insufficient

accuracy

Table 1. Assurance Case identified VO hazards, and their factors and values.

American Institute of Aeronautics and Astronautics

10

IV. Conclusion

We have presented our hybrid method, combining Assurance Cases and High Throughput Testing, designed to

blend the advantages of both approaches. It integrates testing, analysis, and environmental and operational

assumptions, from which the set of conditions that high-fidelity testing must cover is determined. Information from

the Assurance Case is used to determine the test coverage needed, and fed into HTT to generate the minimal test

suites needed to provide that coverage.

Our efforts to date have focused on demonstrating this approach on some mission-critical aspects of a Mars

rover. The results of this effort show support for our primary objectives, namely that Assurance Cases are both

sufficient and practical as a way to present the argument for assurance of autonomy, and that in combination with

HTT can guide the generation of efficient test suites, particularly for the high fidelity tests needed to cover

autonomy’s operational and environmental conditions.

Our Assurance Cases covered both a “progress” goal and a “safety” goal. In developing them we found existing

guidance and tooling sufficient for our purposes. Use of “patterns” proved beneficial for constructing and organizing

our autonomy arguments, just as others have promoted and used them effectively in assurance cases for other kinds

of systems. We also found that others not previously familiar with Assurance Cases could readily comprehend the

arguments they presented.

In order to demonstrate our hybrid approach we carried the “safety” Assurance Case through to the point where

environmental and operational conditions that would potentially challenge a key component of the autonomous

system were identified. We then extracted the information of what factors and values for those factors would need to

be covered by testing. Feeding this into HTT then yielded efficient test suites. We were encouraged to see that the

result of this was HTT’s generation of a more efficient and more comprehensive test suite than the original manually

generated set.

5
25

100

402

4 20

82

341

3 16

67

272

0

50

100

150

200

250

300

350

400

450

1 2 3 4

N
u

m
b

e
r

o
f

Te
st

s

k Values for k-way Factor Combinations

Tests for 100%
coverage

Tests for 90%
coverage

Tests for 80%
coverage

Figure 7. Numerical summaries of HTT analysis results.

Factor #

Nominal value(s) VO hazard value(s)

Distant_Features Absent Present 2

Ground_Interaction Nominal Low_Slip, High_Slip, Low_Skid, High_Skid 5

Lighting Nominal Low, High, Vertical, Self_Shadowed 5

Motion Short distance, Small rotation Long_Distance, Large_Rotation 4

Optics Nominal Degraded 2

Terrain_Texture Medium, High Smooth, Rippled 4

Values (union of nominal and hazard)

Table 2. Inputs for HTT.

American Institute of Aeronautics and Astronautics

11

Appendix

Fig. 8 illustrates those

features of the Goal

Structuring Notation (GSN)

used in the fragments of our

assurance case appearing in

this paper.

 Goal, portrayed as a

rectangle, contains a

statement phrased as a

proposition (i.e., be either

true or false).

 Strategy, portrayed as a

diamond, described how a

goal is decomposed into

subgoals such that if each

of the subgoals is true,

then the goal is true.

 Evidence, portrayed as a

circle, describes something

that shows the goal from

which it linked is true.

 Context, portrayed as a

round-ended rectangle,

provides additional

information when needed.

Each of these has an identifier (unique in the diagram in which these occur) and a textual description. The

“IsSolvedBy” arrows indicate the structure of the argument, i.e., the arrow points from an item to the item that

supports it (e.g., from a goal to the evidence that shows the goal to be true). Conventionally, argument structures

composed of these elements are organized in a top-down fashion. Argument structures can and do get quite large, so

it is common to decompose them into pieces, allowing an argument to continue on another page.

Note that the notation does not preclude goal statements that are false, and arguments that are invalid; some form

of review is necessary to assure this is not the case when an argument is presented.

Acknowledgments

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a

contract with the National Aeronautics and Space Administration and funded through the internal Research and

Technology Development program. The authors thank Mike McHenry for providing us plentiful information on

M2020, and Ewen Denny for allowing us use of AdvoCATE for creating and editing assurance cases.

Reference herein to any specific commercial product, process, or service by trade name, trademark,

manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet

Propulsion Laboratory, California Institute of Technology.

References

1Maimone, M., Johnson, A., Cheng, Y., Wilson, R., and Matthies, L., “Autonomous Navigation Results from the Mars

Exploration Rover (MER) Mission,” Experimental robotics IX, pp. 3-13, 2006.
2Greeley, R., Whelley, P.L., Arvidson, R.E., Cabrol, N.A., Foley, D.J., Franklin, B.J., Geissler, P.G., Golombek, M.P.,

Kuzmin, R.O., Landis, G.A., and Lemmon, M.T., “Active dust devils in Gusev crater, Mars: observations from the Mars

exploration rover spirit,” Journal of Geophysical Research: Planets, 111(E12), 2006.
3Francis, R., Estlin, T., Gaines, D., Bornstein, B., Schaffer, S., Verma, V., ... & Thompson, D. (2015, October). “AEGIS

autonomous targeting for the Curiosity rover's ChemCam instrument,” Applied Imagery Pattern Recognition Workshop (AIPR),

IEEE pp. 1-5, 2015.
4Kornfeld, R. P., Prakash, R., Devereaux, A. S., Greco, M. E., Harmon, C. C., and Kipp, D. M., “Verification and validation

of the Mars science laboratory/curiosity rover entry, descent, and landing system,” Journal of Spacecraft and Rockets, 51(4), pp.

1251-1269, 2014.

Figure 8. Guide to this paper’s use of Graphical Structuring Notation.

American Institute of Aeronautics and Astronautics

12

5Ono, M., Rothrock, B., Almeida, E., Ansar, A., Otero, R., Huertas, A., & Heverly, M., “Data-driven surface traversability

analysis for Mars 2020 landing site selection,” IEEE Aerospace Conference, pp. 1-12, 2016.
6Reinhart, D.J., Knight, J.C., and Rowanhill, J., “Understanding What It Means for Assurance Cases to ‘Work’,” NASA/CR–

2017-219582, 2017

7National Research Council, Software for Dependable Systems: Sufficient Evidence? The National Academies Press,

Washington, DC, 2007.
8Weinstock, C. B., Goodenough, J. B., and Hudak, J. J. (2004). Dependability cases (No. CMU/SEI-2004-TN-016).

CARNEGIE-MELLON UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST., 2004.
9Feather, M. S., and Markosian, L. Z., “Building a safety case for a safety-critical NASA space vehicle software system.,”

IEEE Fourth International Conference on Space Mission Challenges for Information Technology (SMC-IT), IEEE, pp. 10-17,

2011.
10Nguyen, E. A., and Ellis, A. G., “Experiences with assurance cases for spacecraft safing,” IEEE 22nd International

Symposium on Software Reliability Engineering (ISSRE), IEEE, pp. 50-59, 2011.
11Denney, E., and Pai, G., “A methodology for the development of assurance arguments for unmanned aircraft systems,”

33rd International System Safety Conference (ISSC 2015), 2015.
12Brat, G., Davies, M., Giannakopoulou, D., and Neogi, N., “Workshop on Assurance for Autonomous Systems for

Aviation,” NASA/TM-2016-219466, 2016.
13Kelly T, and Weaver R. “The goal structuring notation–a safety argument notation,” Proceedings of the Dependable

Systems and Networks Workshop on Assurance Cases. Citeseer, 2004.
14Kelly, T., and McDermid, J., “Safety case construction and reuse using patterns,” Safe Comp 97, pp. 55–69, 1997.
15Kuhn, D.R., Kacker, R.N., and Lei, Y., “Practical Combinatorial Testing,” NIST Special Publication 800-142, Oct. 2010.
16Kuhn, D.R., Wallace, D.R., and Gallo, A., “Software Fault Interactions and Implications for Software Testing,” IEEE

Transactions on Software Engineering, 30(6), pp. 418-421, 2004.
17Bryce, R., Rajan, A., and Heimdahl, M.P.E., “Interaction Testing in Model Based Development: Effect on Model

Coverage,” IEEE 13th Asia Pacific Software Engineering Conference (APSE’06), 2006.
18Kuhn, D.R., and Reilly, M.J., “An Investigation of the Applicability of Design of Experiments to Software Testing,” 27th

NASA/IEEE Software Engineering Workshop, NASA Goddard Space Flight Center, 4-6 December, 2002.
19Alexander, R., Hawkins, H., and Rae, D., “Situation coverage - a coverage criterion for testing autonomous robots,”

Technical Report YCS-2015-496, Department of Computer Science, University of York, February 2015.

20Mullins, G.E., Stankiewicz, R.G., Hawthorne, R.C., Appler, J.D., Biggins, M.H., Chiou, K., Huntley, M.A., Stewart, J.D.,

and Watkins, A.S., “Delivering Test and Evaluation Tools for Autonomous Unmanned Vehicles to the Fleet,” Johns Hopkins

APL Technical Digest, Volume 33, Number 4, pp. 279-288, 2017.
21Denney, E., Pai, G., and Pohl, J., “AdvoCATE: An assurance case automation toolset,” Computer Safety, Reliability, and

Security, pp. 8-21, 2012.
22Denney, E., & Pai, G., “A formal basis for safety case patterns,” International Conference on Computer Safety, Reliability,

and Security, pp. 21-32, 2013.
23Vectra Group Limited, “Literature Review on the Perceived Benefits and Disadvantages of UK Safety Case Regimes,”

Report No. 402083-R01, 2003. URL: http://www.hse.gov.uk/research/misc/sc402083.pdf [cited 4 June 2017].
24Rinehart, D.J., Knight, J.C., and Rowanhill, J., “Understanding what it means for assurance cases to ‘work’,” NASA/CR-

2017-219582, 2017.
25Duan, L., Rayadurgam, S., Heimdahl, M., Ayoub, A., Sokolsky, O., & Lee, I., “Reasoning about confidence and

uncertainty in assurance cases: A survey,” Software Engineering in Health Care, 2014.
26Kelly, T. P., “A six-step method for the development of goal structures,” York Software Engineering, Flixborough, UK,

1997.
27Spriggs, J., GSN-The Goal Structuring Notation: A Structured Approach to Presenting Arguments, Springer Science &

Business Media, London, 2012.
Alexander2008Alexander, R., and T. Kelly. “Simulation and prediction in safety case evidence,” International System Safety

Conference, 2008.
28Yamamoto, S., and Matsuno, Y., “An evaluation of argument patterns to reduce pitfalls of applying assurance case,” in

Assurance Cases for Software-Intensive Systems (ASSURE), 2013 1st International Workshop on, pp. 12-17, 2013..
29NASA, Dezfuli, H., Benjamin, A., Everett, C., Smith, C., Stamatelatos, M., & Youngblood, R., “NASA System Safety

Handbook, Volume 1; System Safety Framework and Concepts for Implementation” NASA/SP-2010-580, 2010
30Hawkins, R., Clegg, K., Alexander, R., and Kelly, T., “Using a Software Safety Argument Pattern Catalogue: Two Case

Studies,” Computer Safety, Reliability, and Security, pp. 185-198, 2011.
31Kane, A, “Runtime monitoring for safety-critical embedded systems,” CMU, 2015.
32Maimome, M., Cheng, Y., and Matthies, L., “Two years of Visual Odometry on the Mars Exploration Rovers,” Journal of

Field Robotics 24(3), pp. 169-186, 2007.
33Johnson, A., Wilson, R., Cheng, Y., Goguen J., Leger, C., San Martin, M., and Matthies, L., “Design Through Operation of

an Image-Based Velocity Estimation System for Mars Landing,” International Journal of Computer Vision 74(3), pp. 319–341,

2007.

http://www.hse.gov.uk/research/misc/sc402083.pdf

